Giant quantum Hall plateaus generated by charge transfer in epitaxial graphene

نویسندگان

  • J. A. Alexander-Webber
  • J. Huang
  • D. K. Maude
  • T. J. B. M. Janssen
  • A. Tzalenchuk
  • V. Antonov
  • T. Yager
  • S. Lara-Avila
  • S. Kubatkin
  • R. Yakimova
  • R. J. Nicholas
چکیده

Epitaxial graphene has proven itself to be the best candidate for quantum electrical resistance standards due to its wide quantum Hall plateaus with exceptionally high breakdown currents. However one key underlying mechanism, a magnetic field dependent charge transfer process, is yet to be fully understood. Here we report measurements of the quantum Hall effect in epitaxial graphene showing the widest quantum Hall plateau observed to date extending over 50 T, attributed to an almost linear increase in carrier density with magnetic field. This behaviour is strong evidence for field dependent charge transfer from charge reservoirs with exceptionally high densities of states in close proximity to the graphene. Using a realistic framework of broadened Landau levels we model the densities of donor states and predict the field dependence of charge transfer in excellent agreement with experimental results, thus providing a guide towards engineering epitaxial graphene for applications such as quantum metrology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic transport and quantum hall effect in bipolar graphene p-n-p junctions.

We have developed a device fabrication process to pattern graphene into nanostructures of arbitrary shape and control their electronic properties using local electrostatic gates. Electronic transport measurements have been used to characterize locally gated bipolar graphene p-n-p junctions. We observe a series of fractional quantum Hall conductance plateaus at high magnetic fields as the local ...

متن کامل

Interaction driven quantum Hall effect in artificially stacked graphene bilayers

The honeycomb lattice structure of graphene gives rise to its exceptional electronic properties of linear dispersion relation and its chiral nature of charge carriers. The exceptional electronic properties of graphene stem from linear dispersion relation and chiral nature of charge carries, originating from its honeycomb lattice structure. Here, we address the quantum Hall effect in artificiall...

متن کامل

Charge density wave in graphene: magnetic-field-induced Peierls instability

We suggest that a magnetic-field-induced Peierls instability accounts for the recent experiment of Zhang et al. in which unexpected quantum Hall plateaus were observed at high magnetic fields in graphene on a substrate. This Peierls instability leads to an out-of-plane lattice distortion resulting in a charge density wave (CDW) on sublattices A and B of the graphene honeycomb lattice. We also d...

متن کامل

Quantum Hall effect in graphene

The quantum Hall (QH) effect in two-dimensional electron and hole gas is studied in high quality graphene samples. Graphene samples whose lateral size∼10 μmwere fabricated into mesoscopic devices for electrical transport measurement in magnetic fields. In an intermediate field range of up to 10 T, a distinctive half-integer QH effect is discovered with QH plateaus appearing at a filling factor ...

متن کامل

Quantum Hall effect in epitaxial graphene with permanent magnets

We have observed the well-kown quantum Hall effect (QHE) in epitaxial graphene grown on silicon carbide (SiC) by using, for the first time, only commercial NdFeB permanent magnets at low temperature. The relatively large and homogeneous magnetic field generated by the magnets, together with the high quality of the epitaxial graphene films, enables the formation of well-developed quantum Hall st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016